Appendix to ‘Roth’s theorem on progressions revisited,’ by

نویسندگان

  • J. BOURGAIN
  • TOM SANDERS
چکیده

The previous best estimates are due to Chang [Cha02] who showed the above result (up to logarithmic factors) with 2 in place of 7/4. Note that one cannot hope to improve the dimension bound past ⌊K − 1⌋, or the exponent of K in the size bound below 1; at the end of [Cha02] Chang (using arguments of Bilu [Bil99]) actually shows how to bootstrap the dimension bound to ⌊K−1⌋ for a small cost in the size bound. See the notes [Gre05] of Green for an exposition of this argument. The second result we shall show is an improvement of a theorem of Konyagin and Laba from [K L06]. For α ∈ R and A ⊂ R we write α.A := {αa : a ∈ A}. Theorem 1.2. Suppose that A ⊂ R is a finite set and α ∈ R is transcendental. Then |A+ α.A| ≫ (log |A|) 4/3 (log log |A|)8/3 |A|.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roth’s Theorem on Progressions Revisited

This paper is a sequel to [B]. Our main result is an improvement of the density condition for a subset A ⊂ {1,. .. , N } to contain a nontrivial arithmetic progression of length 3. More specifically, we prove the following Theorem 1. (0.1) δ ≫ (log log N) 2 (log N) 2/3 (N assumed sufficiently large), then A contains nontrivial progressions of length 3.

متن کامل

Roth’s Theorem on 3-term Arithmetic Progressions

This article is a discussion about the proof of a classical theorem of Roth’s regarding the existence of three term arithmetic progressions in certain subsets of the integers. Before beginning with this task, however, we will take a brief look at the history and motivation behind Roth’s theorem. The questions and ideas surrounding this subject may have begun with a wonderful theorem due to van ...

متن کامل

On a generalisation of Roth’s theorem for arithmetic progressions and applications to sum-free subsets

We prove a generalisation of Roth’s theorem for arithmetic progressions to d-configurations, which are sets of the form {ni+nj +a}1≤i≤j≤d with a, n1, ..., nd ∈ N, using Roth’s original density increment strategy and Gowers uniformity norms. Then we use this generalisation to improve a result of Sudakov, Szemerédi and Vu about sum-free subsets [10] and prove that any set of n integers contains a...

متن کامل

A quantitative improvement for Roth's theorem on arithmetic progressions

We improve the quantitative estimate for Roth’s theorem on threeterm arithmetic progressions, showing that if A ⊂ {1, . . . , N} contains no nontrivial three-term arithmetic progressions then |A| N(log logN)4/ logN . By the same method we also improve the bounds in the analogous problem over Fq [t] and for the problem of finding long arithmetic progressions in a sumset.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008